=Pr-L

Exercise |, Theory of Computation 2025

These exercises are for your own benefit. Feel free to collaborate and share your answers
with other students. Solve as many problems as you can and ask for help if you get stuck
for too long. Problems marked * are more difficult but also more fun :).

These problems are taken from various sources at EPFL and on the Internet, too numer-

ous to cite individually.

1 (Ezercise 1.1 in Sipser’s book) The following are the state diagrams of two DFAs, M; and M.

M,

Answer the following questions about each of these machines.

What sequence of states does the machine go through on input aabb?

Does the machine accept the string aabb?

la What is the start state?

1b What is the set of accepting states?
1c

1d

le Does the machine accept the string €7
Solution:

My Mo
la ¢ ¢
1b {a2} {a1,q4}
lc q1, 42,93, 41, 1 a1, 41,91, 42, g4
1d No Yes
le No Yes

Page 1 (of 8)

CS-251 Theory of Computation

Spring 2025

(Based on Exercise 1.4 in Sipser’s book) Each of the following languages is the intersection of two
simpler languages. In each part, construct DFAs for the simpler languages, then combine them
using the construction discussed in class to give the state diagram of a DFA for the language
given. In all parts, ¥ = {a, b}.

2a {w | w has exactly two a’s and at least two b’s}

2b {w | w has an even number of a’s and each a is immediately followed by at least one b}

Solution:

2a The following are DFAs for the two languages {w | w has exactly two a’s} and {w | w has
at least two b’s}, respectively.

b b b a,b
<) a () a (> a <)
a a a,b
<) b () b (>

Combining them using the intersection construction gives the following DFA.

a
b

a
b

a,b

b b b

Though the problem doesn’t ask you to simplify the DFA, the three states on the very right
can be combined into a single one, as they all act as “dead states” from which one can never
reach an accepting state.

Page 2 (of 8)

CS-251 Theory of Computation e Spring 2025

2b These are DFAs for the two languages {w | w has an even number of a’s} and {w | each a
in w is immediately followed by at least one b}.

Though the problem doesn’t ask you to simplify the DFA, the two states on the right can be
combined into a single one, as they both act as “dead states” from which one can never reach an
accepting state.

Page 3 (of 8)

CS-251 Theory of Computation e Spring 2025

3 (Based on Exercise 1.5 in Sipser’s book) Each of the following languages is the complement of
a simpler language. In each part, construct a DFA for the simpler language, then use it to give
the state diagram of a DFA for the language given. In all parts, ¥ = {a, b}.

3a {w | w does not contain the substring ab}

3b {w | w does not contain the substring baba}

Solution:

3a The DFA below recognizes the language {w | w contains ab}.

b a a,b
<) a () b (>
The DFA below recognizes its complement i.e. { w | w does not contain ab }.

b a a,b
o0

3b The DFA below recognizes the language {w | w contains baba}.

Page 4 (of 8)

CS-251 Theory of Computation e Spring 2025

4 Suppose Aj, Ag, and As are regular languages over the alphabet 3. Prove that (A; U Ag) N As
is regular by giving a formal description of a finite automaton recognizing it.

Solution: We know that A;, Ao, and Ag are regular languages. Hence, there are finite automata
that recognize them. Let My = (Q1, ¥ ,01, q1, F1) such that L(M;) = A;. In other words, let
M be the automaton that recognizes A;. Define My and M3 similarly for As and As.

We first construct Mis = (Q12, ¥ ,012, q12, F12) where

* Q12 = Q1 x Q2,

o 512((s1,82),a) = (01(s1,a),d2(s2,a)),
* q12 = (q1,42),

o Fio= (Fl X Q2) U (Ql x Fy).

Observe that Mjy is the machine such that L(Mjo) = A U As.
We then construct My = (Q123, > ,0123, G123, F123) where

Q123 = Q12 X Q3,

0123((s1,52),a) = (d12(s1, a), 63(s2, a)),
q123 = (Q12, Q3)7

Fia3 = (F12 x F3).

Observe L(Mje3) = L(Mi2) N Az = (A1 U Ag) N Az as required.

5 For the automaton given below, describe the language it recognizes. Prove that your description
is correct.

Solution: Denote the given automaton by M. The language recognized by M is
L = {w | w has “100” as a substring} .

We provide two different proofs of this below.

First solution (ad-hoc): We show that the automaton stops in the only accepting state gs,
if and only if the input string has “100” as a substring. We prove the two directions separately.

First, consider any input s € L. Clearly, we can write s = 100y for some possible empty
words x,y. According to the illustration of the automaton, we know that starting from any state
q, reading “100” will lead to state gs. Indeed, the four different paths when reading “100” are:
(90, q1,92,93), (a1, 41,92, 43) (@2, 41, G2, g3) and (g3, G3,q3,q3). Therefore, no matter what state ¢
the automaton is in after reading x, after reading “100” we are in state g3. Since no paths lead
out of state ¢3, the automaton will stay in g3 until the entire string is read, and thus accept, just
as desired.

For the converse, suppose that the automaton accepts an input s. Then, there exists some
1 € N such that after reading s;, the i-th symbol of s, the automaton is in state g3 for the first
time. Moreover, since the shortest path from the initial state to state g3 is of length 3, we must

Page 5 (of 8)

CS-251 Theory of Computation e Spring 2025

have ¢ > 3. Since this is the first time we reach g3, we must be in state ¢o after reading s;_1,
according to the graph. Therefore, we must have that s; = 0. But the only way to get t state g
is from ¢i, thus we deduce that s;—; = 0 also. Finally, since all incoming arrows at state q; are
labelled 1, we must have read the symbol 1 to get there. We conclude that therefore s;_o = 1
and consequently s contains“100” as a substring, as desired.

Second solution (induction): We proceed by induction, following the framework discussed
in class.

Claim. Let x be an arbitrary input to the automaton. We consider four cases:
1. If x does not contain any 1’s, the automaton M terminates in state gg.

2. If the last symbol of x is a “1”, but x does not contain “100” as a substring, then M
terminates in state q;.

3. If the last two symbols of z are “10”, but x does not contain “100” as a substring, then M
terminates in state qs.

4. If x contains “100” as a substring, then M terminates in state gs.

Note that these four cases are mutually exclusive and together cover all possible inputs. Also,
note that it suffices to prove this claim since it implies that the automaton terminates in the
only accepting state g3 if and only if the input contains “100” as a substring.

We now prove the above claim by induction on the length of the input x:

Base case. If x has length 0 (i.e. x is the empty string), then = does not contain any 1’s and
M terminates in the start state qg, as desired.

Inductive step. Let z be some non-empty input string. By the inductive hypothesis, we can
assume that the claim is true for all input strings that are shorter than =x.

Let 2/ be the string obtained from z by removing the last symbol. This string is clearly
shorter than x, so we can apply the inductive hypothesis to reason about which state M is in
just before reading the last symbol of the input .

1. If 2/ does not contain any 1’s we know that after reading z’, M is in state qo. If the last
symbol of = is a 0, then up feeding it to M, it stays in state qg, as desired. If the last
symbol of z is a 1 instead, then = ends with a 1 but does not contain “100” as a substring.
But in this case, M will go to state q1, also as desired.

2. If the last symbol of z’ is a “1” but 2’ does not contain “100”, then after reading ', M is
in state g1. We again consider the last symbol of z. If it’s a 0, then the last two symbols
of z are “10” but x does not contain “100” as a substring, while M ends up in state g2,
as desired. If it’s a 1 instead, then the last symbol of x is a 1 and M ends in state ¢, as
desired.

3. If the last two symbols of 2’ are “10” but 2’ does not contain “100”, then after reading x’,
M is in state go. We consider the last symbol of z once more. If it’s a 0, then x contains
“100”, and M ends in state g3, as desired. If it’s a 1, then z ends with a 1 but does not
contain “100” as a substring, while M goes to state ¢q, as desired.

Page 6 (of 8)

CS-251 Theory of Computation e Spring 2025

4. Finally, if 2’ contains “100” as substring, then after reading x’, M is in state ¢3. But 2’ is a
substring of x, so x also contains “100” as a substring. Moreover, no matter what the last
symbol of x is, M will stay in state g3, just as desired.

Thus, we conclude that the claim holds true for all input strings x.

The following automaton is over the alphabet 3 = {0, 1} and the set of states is @ = {qo, q1, ¢2}-
The start state is gy and the accepting states are F' = {q1,¢2}.

6a Write down the transition function § for this automaton.

6b* Describe the language recognized by the automaton and prove the correctness of your claim.

Hint: ULDd D 40f J00) PUD LIPLO JDINIDU 2ULOS UL Ypbud] paxif v fo syndu v fiif

Solution:

6a The transition function § :) x 3 — @ is given by
6(90,0) = qo, (g0, 1) = q1;

3(q1,0) = q2, 6(q1,1) = qo;
0(q2,0) = q1, 6(q2,1) = qo.

6b* The automaton recognizes the binary strings w if and only if w, when interpreted as an
integer in base two, is not divisible by 3. Note that the empty string represents 0 by convention.
Going forth, we will treat binary strings interchangeably with the integers they represent in base
two. Let M denote the automaton in question.

Claim. Let z be an arbitrary input. We consider three cases:
1. If x = 3k for some k € N, then M terminates in state gg.
2. If x =3k + 1 for some k € N, then M terminates in state q.
3. If x =3k + 2 for some k € N, then M terminates in state gs.

Note that these cases are exhaustive. Moreover, observe that ¢q; and ¢ are the only accepting
states, so it suffices to prove the claim to solve the problem. We prove the claim by induction
on the length of the input string x.

Base case. If x has length 0 (i.e. z is the empty string), it represents the integer 0, which is
of the form 3k. Meanwhile, M terminates in the start state qg, as desired.

Page 7 (of 8)

CS-251 Theory of Computation e Spring 2025

Inductive step. Let z be a non-empty input string. By the inductive hypothesis we can assume
the claim is true for all strings shorter than z.

Let 2’ be the string obtains from z after removing the last symbol. Since 2’ is clearly shorter
than x, we can apply the inductive hypothesis to /. We use this to distinguish cases depending
on which state M is in after reading all but the last symbol of x:

1. If M is in state qg, then we have 2’ = 3k for some k € N. We consider the last symbol of
x. If it’s a 0, we have z = 22/ = 3 - (2k), and M will stay in state qg, as desired. If instead
it’s a 1, then we have z = 22/ + 1 =3 - (2k) + 1, and M goes to state g1, as desired.

2. If M is in state ¢p, then we have 2/ = 3k + 1 for some k& € N. Again, we consider the last
symbol of . If it’s a 0, we have x = 22’ = 2 x (3k + 1) = 3 - (2k) + 2, and M goes to g,
as desired. If instead it’'s a 1, we have z =22/ +1=2-(3k+1)+1=3-(2k+1), and M
goes to qp, as desired.

3. Finally, if M is in state g9, then we have 2/ = 3k + 2. If the last symbol of x is a 0, then
x=22=3-(2k+1)+ 1, and M goes to q1, as desired. If instead it’s a 1, then we have
x=2r"41=3x%x(2k+1)+2, and M goes to ¢, as desired.

Thus, we conclude that the claim holds for all input strings z.

Page 8 (of 8)

CS-251 Theory of Computation e Spring 2025

